
dt pn { 

+ xi,l-hq Z x~ exp liq t 2W i - -  -T- [iq i -2-~7 ] j X 
s:ljq 

s- l jq ,$  - -  x s ,s+ljq 
liq ~ js ./+z~q,] xi] exp ljq 1 • flj,j_~q + x~;j+ xj~ - 2 ~  ] (4 .13)  

s : o  s : l j q  

O i 2J -'7 liq ~ 
T liq t 2W{ ] "~]+liq'l -t- Zs:o xJseL]-tiqJ] + 

_ 2  l. ~ _-~ .~q~ _O_i . { _~ 

+ ~ x~,~-l~qe -- x~j Cq (1, ! - -  liq)-- 

where the quantities Rr(f) ' s,s' , Rr(f), 9~f f,, Bq, and Cq(f, f') are determined, respectively, 
by the relations (2.3), (4.4), (4.9)]'and (s (4.6). Only chemical reactions of the 
type (1.2) are taken into account in (4.13) in the summation over r, while only processes 
of the type (1.4) are taken into account in the summation over q in the first sum and only 
processes of the type (1.5) in the second sum. 
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INFLUENCE OF NONEQUILIBRIUM OF THE CHEMICAL COMPOSITION OF A GAS ON ITS MOTION 

B. A. Klumov and I. V. Nemchinov UDC 533.6.011 

We consider a gas cloud in which chemical equilibrium is disturbed, which can be ac- 
complished, for example, by a pulse of ionizing or dissociating radiation. In this case the 
specific thermal energy e t can be far lower than the specific chemical energy ec, i.e., the 
energy expended on breaking chemical bonds, the excitation of levels, and ionization. 

In the process of relaxation of the nonequilibrium state of the gas the chemical energy 
is converted into thermal energy and the initially stationary gas starts to expand. The de- 
crease in density during the dispersal causes a decrease in the rates of the chemical reac- 
tions, and the transfer of chemical into thermal energy is slowed, which in turn influences 
the intensity of dispersal. In such phenomena the gasdynamie processes and processes of 
chemical kinetics are closely connected with each other. A joint solution of the equations 
of gasdynamios (GD) and chemical kinetics (CK) is required for their correct description. 
Here the solution even of the CK equations alone causes considerable difficulties, since the 
corresponding system is "strict" [i]. Sufficiently effective methods of solving such sys- 
tems were recently developed [2, 3]. However, for a moving gas additional difficulties 
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arise in connection with the nonuniformity of the spatial density distribution. 

i. We write the system of equations describing the gas motion in the absence of equi- 
librium: 

Oxj Ou~ Op p OxaOx~Ox ~ Oe O(l/p)~o; 
O--/- =Uj~ P 'gF= Oxj' Po - - 0 ~ 0 ~ 0 ~ 3  ' Ot + p  Ot 

( 1 . 1 )  

o"-F = Q~ - -  a # i  + n~ In  p, ot 
i i 

Y k Y k 
(1.2) 

e =  e t + ec , et = X Cv~n~T, p = X n~kT, 9 = X n~F~, n~ = (1.3) 

Here T is the temperature; t is time; xj are the Eulerian coordinates; ~i are the Lagrangian 
coordinates; uj are the velocity components (j = !, 2, 3); p is the pressure; p is the den- 
sity; CVi is the mean heat capacity of particles of the kind i in the temperature range up 
to T; D i is the dissociation ~otential of particles of the kind i; n i is the concentration 
of particles of the kind i; n~ is the concentration of i particles which are in th~ state k 
with an energy ~; n~ and n~e are the corresponding equilibrium concentrations; (R~k) Y is 
the probability of a transition from level j to level k as a result of the processJY for an 
i particle; Qi and ~ini are the terms determining the creation and disappearance of particles 
of the kind i; ~i is the molecular weight of an i particle. The general system is closed by 
the initial and boundary conditions, which for the case of the dispersal of an initially 

stationary gas into a vacuum has the form 

X3/t=o : ~j, Ujlt= o ~ O, TIt=o : To(~j), 

0 i ]two io 

where boundary points are marked by the index *; n~ and n~ ~ are the initial concentrations 
and populations of levels of particles of the kind i. 

In solving the CK equations for a moving gas one must know the density P(t, ~j). The 
task is also greatly complicated by the fact that the CK equations must be solved ht a large 
number of points of space in accordance with the "gasdynamic" partitioning of the region of 
gas under consideration. Of course, a calculation of the entire problem will be too labor- 
ious in such a case, even using efficient methods of solving "strict" systems. 

We propose a method of solving such problems which can be provisionally called the method 

of an "effective adiabatic index." The effective adiabatic index y is defined by analogy 

to equilibrium thermodynamics: 

7 = i + pvle, v = i l9 .  ( 1 . 4 )  

The essence of the method consists in splitting the system (1.1)-(1.3) with respect to 
physical factors, which are considered separately. In the given case Eqs. (i.i) and (1.4), 
or the GD equations and the system (1.2), (1.3), or the CK equations are considered separ- 
ately. They are connected through the functions y(t, ~i) and p(t, ~j). The function p(t, 
~) is used to calculate the CK equations and to obtainOthe function y(t, ~j) from (1.4), 
while y(t, ~j) is used to calculate the GD equations and determine the function p(t, ~j) 
used in the CK system. Thus, the general system is divided into two blocks, which exchange 
a relatively small volume of information in the process of calculation. When the quantity 
y depends little on the Lagrangian coordinates ~j there is no need to consider the CK at 
each point of space at which the density p(t,~j) is found. The CK system is calculated at 
selected points ~j. The function y(t, ~j) is ~etermined at the same points. At the remain- 
ing points the value of y(t, ~j) is determined by interpolation. If the value of y(t, ~j) 
varies little at neighboring points ~j, then the interval between them is increased. In 
certain cases, such as in the propagation of a shock wave through a gas, equilibrium is dis- 
rupted at the front and it is advisable to interpolate the quantity y not over ~j for a 
given value of t but over certain combinations ~s(~j, t) connected with the motion of the 
shock wave front. In other cases, such as in dispersal problems, it is sufficient to inter- 
polate over ~j, and it is quite evident that the number of "reference" points ~j can be small. 
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Sometimes it is convenient to determine the effective adiabatic index y(t, <j) at once 

over a certain substantial time interval, so as to eliminate exchange between the blocks at 

each time step. 

It is convenient to use the method of successive approximations to find such a function 

y(t, ~j). As the first approximation one can take the function y1(t) obtained in a calcula- 

tion of the CK equations with an assigned law of density variation (e.g., corresponding to 
the inertial stage of dispersion, p~t-3). Then considering the system of GD equations with 

the function yz(t) and refining the law p(t, ~j), we can obtain the second approximation Y2 
(t, ~j), etc. The use of such procedures, accelerating the calculations, requires a ]preliminary 

analysis of the concrete problems. 

2. The model problem of the dispersal into a vacuum of a gas cloud in which the oxygen 

is fully dissociated at the time t = 0 was solved by the method of an "effective adiabatic 

index." The initial composition corresponded to the actual atmosphere in the density range 
of 2"10-2-2"10 -4 kg/m 3, which, according to [4], allows one to be confined to the reactions 

presented in Table i. Ionization and vibrational relaxation were not taken into account. 

The problem was solved under the assumption of spherical symmetry with uniform initial data. 

In this case the system of equations (i.i)-(1.3) takes the form 

o,  a~ r~ a~ O / P ) =  a t +  = 0 ,  o-~ = ~ '  ~7 = - -  0.'--7' o .~ '  P 

~ Z Cv~niT, ec= t ~ 

~.a On~ o 
p= niT, ~ = Q i - ~ n ~ + n ~ I n p ,  

i 

where m is the Lagrangian mass coordinate. The initial and boundary conditions are 

o p ,  O. r* t~=o = Ro,  ~ lt=o = 0 ,  T h=o = To, n~ h=o = n~, = 

The calculations were made for a sphere of initial size Ro = 1 m and initial temperature 

To = 200~ at densities of 2.10-2-2~i0 -4 kg/m 3. 

Let us make some estimates. Suppose that only the initial thermal energy of the gas 

is converted into kinetic energy, while the energy expended on dissociation proves to be 

unused. Then the maximum velocity of dispersal is v m ~ i0 m/sec. Conversely, if all the 

internal energy is converted into kinetic energy then v m ~ 103 m/sec. Thus, the degree of 

equilibrium in the process of dispersal can be judged from the value of v m. 

An analysis of the rates of the chemical reactions enables us to conclude that: for 
Po = 2"10 -3 and 2"10 -4 kg/m 3 the reaction of recombination in triple collisions, 0 + 0 + 

M k § 02 + M, is dominant, where M is any third particle. The characteristic recombination 

time has the order of magnitude 

~2 
o~ (2 .i) 

T O r v  2 ~2 " Kp NA 

. ~ i0 sec for Po = 2"10-4 kg/m3 and Here K is the recombination rate constant We have Zc 
Sc z 3"10-4 sec for Po = 2"i0 -2 kg/m 3. It must be considered that Eq. (2.1) gives an under- 

stated value of T c in this case due to the discarding of endothermal reactions. The char- 

acteristic time of dispersal is T d ~ Ro/~t. In our case z d ~ 3"10 -3 sec. In comparing 

the characteristic CK and GD times we find that a cloud with po = 2"10 -4 kg/m 3 disperses 

with freezing of the degree of dissociation. In this case the effective adiabatic index 

is y + i. If Po = 2"10 -2 kg/m 3 then TC ~< Td, while for t = T d the chemical energy is con- 
verted into thermal energy and dispersal begins. In this case the effective adiabatic in- 
dex y increases monotonically with time and arrives at a "plateau." But if a regime of 

partial freezing occurs, arrival at a plateau does not happen The quantity y reaches a maxi- 

mum and starts to decrease. At t >> td, y § i. 

It should be expected that the boundary points (m ~ M) disperse with complete "freez- 
ing," while the central points (m ~ 0) disperse with a nearly equilibrium value of y. 

A regime of "partial freezing" occurs at intermediate points. With a decrease in Po 
the effects connected with nonequilibrium are enhanced. This is displayed in an increase 
in freezing and a decrease in energy release and hence in the dispersal intensity. At the 

limit t >> T d the sphere expands in the regime of inertial dispersal. 
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TABLE i 

No. Reaction Constant Energy 
yield, eV 

1 
2 
3 
4 
5 
6 
7 
8 

9 
10 

t t  
t2 
t3 
14 
t5 
16 
t7 
18 

19 
20 
2i 
22 
23 
24 

25 
26 
27 
28 
29 
30 

0 + 0 ~ +  M--+ O a +  M 
O + O + M - + - O 2 + M  
0 2 +  02-"- 0 + . 0 +  02 
02+ N2 "+ 0 + O+  N 2 
0 ~ +  0 - , - 0  + O +  0 
0 + N~--~ N + NO 
O +  N O + M - ~  N 0 ~ + M  
O + N O ~ N 0 2 + h v  

0 + N + M--~-NO + M 
0 + N0--~- N + 02 

NO + N,, -+ N2 + 0 
NO + O~ --,- N + 0 + O. 2 
N 0 + N 2 - 4 N + 0 + N ,  a 
N O + O - + N + O + O  
N O +  NO-+ N +  O + N O  
N 0 + N - +  N + O + N  
N + Oa--+NO + 0 
NO+NO+O~-~NO,+ 

+ N02 
NO + NO-+ N 2+ 02 
N O + N O - +  N 2 0 + O  
N2 + 0~-+  NO + NO 
N 0 2 + O - +  N O + O ~  
NO 2 + 0 2 ~ NO + O a 
NO2 + NO2 -~ NO + NO + 

+ 02 
NO2 + 0 + M ~ NO3 + M 
O +  0:~-+ O e +  02 
O3-}- M-+ O + O2 + M 
O a +  N - +  NO + 02 
0 3 +  NO ~ N02 + 02 
03 + NO~ -+ NOa + O~ 

E 1 = 6,6.10-3%xp (5t0/T) 
/~2 = 3,8.10-a~ (--t70/T) 
I~ 3 = (18/ TS /2)exp(-- 59300/T) 
/r = (6. tO-6/T)exp(--59300/T) 
K~ = (t,5.10-a/T)exp(--59300/T) 
/ ~  = t,t6.t0-1Oexp(--37900/T) 
R:  = 2,9.10-3aexp(94t/T) 
E s = 6,4.10 -17 

B" o = 1,8- t 0 - a l l / V ' T  
/r~o = 2,5- tO-15Texp(--t9500/T) 

K n = 1,5. t0-*a~/T 
K12 = (6,6. t0-qra/2)exp(--75377/T) 
/fla = / f 1 2  
/(14 = 20F12 
F]s = 20F m 
Fls = 20/~12 
/~17 = t,1. t0-*4Texp(--3150/T) 
Nls = 9-t0-39exp(413/T) 

/~19 
/~20 
/~21 = 
/~22 
/~23 

(0,8 Ts/2) e x p(--42980/T) 
2,2- t0-12exp(--32t00/T) 
( t 5,t/ T~ /2)exp(--64570/ T) 
3,2. t 0-nexp(--300/T) 
2,8. t0-mexp(--23400/T) 
3,3- t0-mexp(--t3540/T) 

N2a ---- 5.10 -al 
K2s = l , t .~0-nexp(--2150/T)  
N2v = t,65. t0-Sexp(--t t400/T) 
/~ss = 3.10-nexp(-- t200/T) 
/~29 = 9,5-10-1aexp(--1200/T) 
/~ao = 9,8.10-1%xp(--3520/T) 

+ t  
+5,1  

--5,1 

--3,3 
+3 ,2  
N 

--6,5 
- - t ,4  

+3 ,3  
--6,5 
--6,5 
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--6,5 
--6,5 
+ t , 4  

i,2 

t ,9 

- - t , 9  
2 

--2,2 
t ,3 

4,f 
- - 1  

5,5 
2,2 
1,t 

0,1- ~ 3 3  
} 

0 O~ 5 m/M 

Fig. i 

"r / ~  
l: 
Fo-I 

5 -  1 

i 
O" i 
- 5  ~ - 5  log t  

Fig. 2 

The calculated function y(t, m) for Po = 2"10 -2 kg/m 3 is presented in Figs. 1 and 2. 
In Fig. 1 curves 1-3 correspond to t = 10 -4 , 10 -3 , and 10 -2 sec. In Fig. 2 Yo = y(t = 0): 

curve i) m = M; 2) 0.5M; 3) 0.1M (the same in Figs. 3 and 4); M = (i/3)poR~ is the La- 
grangian mass coordinate of the boundary of the sphere (its mass is 4~M). In this example 
of the calculation the regime of "partial" freezing occurs for all points of the sphere. 
It is seen that the qualitative behavior of y(t, m) described above is in agreement with 
the calculated function. 

In Fig. 3. the results of a calculation of the velocity u found in the process of solv- 
ing the problem with an "exact" function y(t, m) (dashed lines) are compared with calcula- 
tions for the equilibrium value T = 1.4 (solid lines) for the case of Po = 2"10 -2 kg/m 3. As 
was estimated above, the effects connected with nonequilibrium are weakly displayed. 
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In Fig. 4 we show the results of a similar calculation but for a lower initial density 
(@0 = 2"10 -4 kg/m3). A regime close to the regime of "total freezing ~' occurs in this case. 
It is seen that the time of the start of dispersal for the real value of 7(t, m) increases by 
an order of magnitude compared with the value calculated for y = 1.4, while the velocity of 
dispersal for y = 1.4 is five times higher than for the actual function y(t, m). 

The method proved to be sufficiently effective in the examples considered. The func- 
tion 7(t, m) was determined by the method of successive approximations. Two iterations pro- 
vided an accuracy of ~5%, indicating rapid convergence. The system of CK equations was cal- 
culated at five points in space, which was sufficient to achieve an accuracy of ~5% in the 
interpolations of y. It will be interesting to extend the described method to a wider class 
of gasdynamic problems with strong nonequilibrium. 

In conclusion, the authors sincerely thank I. A. Devyaterikov, E. A. Ivanov, and V. P. 
Kudryavtsev for useful discussions in the course of the completion of this work. 
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ELECTROHYDRODYNAMIC PROBING OF HIGH-VELOCITY AEROSOL FLOW BY MEANS OF A 

CORONA DISCHARGE 

N. L. Vasil'eva and L. T. Chernyi UDC 532.5134:537.24 

The charging of disperse aerosol particles as they move through a uniform, unipo!ar co- 
ronadischarge whose electric field is directed along the aerosol flux was investigated in [i]. 
The effect of gas motion on the corona discharge characteristics, which is considerable at 
aerosol velocities u ~ bE, where E is the electric field strength and b is the ion mobility, 
was taken into account in these investigations. On the basis of the results obtained in [i], 
we investigate here the macroscopic electrohydrodynamic methods of calculating the mean 
parameters of high-velocity aerosol fluxes in a uniform corona discharge that do not require 
complex microscopic measurements. 

i. Consider the steady-state flow of aerosol consisting of a gas and disperse liquid 
particles between two flat, round grid electrodes, positioned perpendicularly with respect to 
the aerosol flux. Assume that in order to produce a corona discharge a system of points 
oriented along the aerosol flux and starting to display corona at the emitter potential @o > 
0 is mounted on the emitter electrode; the collector electrode is grounded (its potential 
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